Human monocytes, but not dendritic cells derived from them, are defective in base excision repair and hypersensitive to methylating agents.
نویسندگان
چکیده
Monocytes and dendritic cells are key players in the immune response. Because dendritic cells drive the tumor host defense, it is important that monocytes and dendritic cells survive cytotoxic tumor therapy. Although most of the anticancer drugs target DNA, the DNA repair capacity of monocytes and dendritic cells has not yet been investigated. We studied the sensitivity of monocytes and monocyte-derived dendritic cells against various genotoxic agents and found monocytes to be more sensitive to overall cell kill and apoptosis upon exposure to methylating agents (e.g., N-methyl-N'-nitro-N-nitrosoguanidine, methyl methanesulfonate, and the anticancer drug temozolomide). On the other hand, upon treatment with the cross-linking chemotherapeutics fotemustine, mafosfamide, and cisplatin, monocytes and dendritic cells responded in the same way. Monocytes were also more sensitive than lymphocytes. The data indicate a defect in the repair of DNA methylation damage in monocytes. Because the expression of the repair protein O(6)-methylguanine-DNA methyltransferase was higher in monocytes than in dendritic cells, and because its inhibition by O(6)-benzylguanine had no effect on the sensitivity of monocytes, we investigated the base excision repair (BER) pathway. In contrast to dendritic cells, monocytes are unable to perform BER following exposure to methylating agents. Expression studies revealed that monocytes lack XRCC1 and ligase IIIalpha, whereas dendritic cells, similar to human lymphocytes, express these repair proteins at a high level. The data revealed a DNA repair defect in a specific human cell population. The BER defect in monocytes may cause them to be selectively killed during tumor therapy with alkylating agents, provoking hematotoxicity and sustained immunosuppression.
منابع مشابه
Human Monocytes Undergo Excessive Apoptosis following Temozolomide Activating the ATM/ATR Pathway While Dendritic Cells and Macrophages Are Resistant
Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs). In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs ...
متن کاملHuman monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress.
Monocytes are key players in the immune system. Crossing the blood barrier, they infiltrate tissues and differentiate into (i) macrophages that fight off pathogens and (ii) dendritic cells (DCs) that activate the immune response. A hallmark of monocyte/macrophage activation is the generation of reactive oxygen species (ROS) as a defense against invading microorganisms. How monocytes, macrophage...
متن کاملCells deficient in DNA polymerase beta are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage.
DNA polymerase beta (beta-pol), which is involved in base excision repair, was investigated for its role in protection of cells against various genotoxic agents and cytostatic drugs using beta-pol knockout mouse fibroblasts. We show that cells lacking beta-pol are highly sensitive to induction of apoptosis and chromosomal breakage by methylating agents, such as N-methyl-N'-nitro-N-nitrosoguanid...
متن کاملDIFFERENTIATION OF MONOCYTE DERIVED DENDRITIC CELLS IN SERUM FREE CONDITIONS
Human peripheral blood monocytes (HPBM) were cultured in the absence of human serum and were converted into a state exhibiting a high accessory function expressed by their ability of supporting lymphocyte proliferation. After a prolonged culture in serum free media the monocyte derived cells were highly viable, increased in size and developed veils and dendritiform elongatio'l1s. Paralleli...
متن کاملThe role of nanoliposome bilayer composition containing soluble leishmania antigen on maturation and activation of dendritic cells
Objective(s): Dendritic cells (DCs) play a critical role in activation of T cell responses. Induction of type1 T helper (Th1) immune response is essential to generate protective immunity against cutaneous leishmaniasis. The intrinsic tendency of liposomes to have interaction with antigen-presenting cells is the main rationale to utilize liposomes as antigen carriers. In the present study, the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 67 1 شماره
صفحات -
تاریخ انتشار 2007